

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Appgate SDP and
SAML (Security Assertion
Markup Language)

Type: Technical guide

Date: May 2021

Applies to: v5.4 and newer

© 2021 Appgate

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

BACKGROUND TO SAML 3

SAML AS INTENDED 4
APPLYING SAML TO NON-BROWSER-BASED APPS 5

SAML WITH APPGATE SDP 5

APPGATE SDP CASE 1 – ADMIN SAML 5
APPGATE SDP CASE 2 – PORTAL SAML 5
APPGATE SDP CASE 3 – CLIENT SAML 5
APPGATE SDP CASE 4 – CLIENT SAML OVER TLS 7

AUTHENTICATION USER EXPERIENCES 8

DESKTOP 8
MOBILE 8
AUTHENTICATION EVENTS 9

CONFIGURING SAML 10

IDP CONFIGURATION 10
SP (CONTROLLER) CONFIGURATION 10

RESOURCES 10

APPENDICES 11

This document provides background on SAML for those of you who have not used this
technology before. It goes on to explain how SAML has been applied within the Appgate SDP
system; provides an overview of both the user experience and general approach to configuring
SAML as an Identity Provider for use with Appgate SDP. For full details about how to configure
SAML you should refer to the Appgate SDP administration guide and any separate installation
guides.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Background to SAML
Security Assertion Markup Language (SAML) is an XML-based, open-standard data format for
exchanging authentication and authorization data between parties, in particular, between an
identity provider (IdP), and a service provider (SP).
This is important because today’s enterprise employees are accessing a lot of applications from a
lot of different devices using both browsers and native applications. The issue here is the sheer
number of complex passwords a user must remember for all of these - it’s enormous! That’s
where identity federation comes in, by addressing these kinds of challenges it allows enterprises
to share identities in a secure fashion – there is no longer the need to keep separate user profiles
for every application. This identity federation standard is SAML.
The SAML standard specifies three main elements: assertions, protocols, and bindings. There are
three assertions: authentication, attribute, and authorization. There are six protocols of which only
the first is explored in this paper:
• Authentication Request Protocol - used when a SP wishes to obtain assertions containing

authentication statements from an IdP and get back a message containing these assertions]
• Assertion Query and Request Protocol
• Artefact Resolution Protocol
• Single Logout Protocol
• Name Identifier Management Protocol
• Name Identifier Mapping Protocol
Protocols define how SAML asks for and receives assertions. Binding relates to how SAML
message exchanges map to ‘Simple Object Access Protocol’ exchanges. SAML actually works
with various protocols including Hypertext Transfer Protocol [http://] which is the use case
explored in this paper.
Any identity provider (IdP) needs to be pre-associated with the service provider (SP) offering the
resource by before users will be able to sign-in. This is also the case with SAML, where the
administrator would have configured a new ‘integration’ between the two – usually by taking some
information provided by the IdP and seeding the SP (resource) with information as shown below:

Part of this seeding includes the use of public key authentication. The IdP generates a key pair,
consisting of a public key (which all SPs know) and a private key (which is kept secret). The
private key is able to generate digital signatures for the SAML messages. This signature created
using the private key cannot be forged by anybody; but the resources can verify that a particular
message is genuine using the pre-seeded public key.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

SAML as intended
Normally SAML is designed to work with web apps so in this example: Jo wants to access a web-
based resource using her browser (1), typically she would go to
https://resource.mycompany.com.
For a SAML configured resource, it won’t ask for a username and password directly but
instead redirect the browser to the IdP for authentication (2,3), using the seed information
provided by the administrator earlier. The URL the user is redirected to might look something like:

Within this redirect message is the SAML authentication request. As SAML is XML-based, the
complete authentication request message is compressed (to save space in the URL) and
encoded (because certain characters are not allowed in URLs). If we were to unravel the SAML
message it says something like: this is a request from SP xxxxx; please authenticate the sender
of this message, and post the result back.
When the IdP receives this message, it will authenticate Jo by asking her to enter some
credentials (4) in a browser window. This step may not be visible to Jo if ‘single sign-on’ happens
because the request was received while a valid session cookie persists (because Jo already used
the SAML IdP to sign in to another resource).
After successful authentication, the SAML protocol message carrying a SAML authentication
message (5,6) is sent via Jo’s browser to the AssertionConsumerService URL configured within
the IdP.
When we unravel this SAML response message in essence it says something like: this is a
message from IdP zzzzz; I have successfully authenticated the user Jo; this message is valid for
time window yyyyy; and here is my XML digital signature.
This last item is used as proof that the message is genuine and that the message has not been
tampered with en-route. The digital signature is made using a private/public key algorithm and the
public key needed to verify the signature is embedded in a certificate that is already configured
within the resource.
The resource reads the SAML authentication response message, it verifies the signature and
checks things such as the subject of the message (user’s identifier (NameID)), then any:
Authentication assertions (Jo was authenticated at a specific time via this type of authentication
mechanism); Attribute assertions (Jo is associated with the following claims/attributes);
Authorization decision assertions (Jo’s access to the resource has been granted or not). The full
list of what Appgate SDP requires in the SAML message is shown in the Appendix.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Applying SAML to non-browser-based apps
SAML was never envisaged to be used with non-browser-based resources because of its use of
http redirects but, since its invention in 2002, the world has changed and mobile apps are
everywhere. Because of this evolution, many apps including the Appgate SDP Client are being
developed using ‘web view’ technologies, which certainly helps in respect of the use of SAML.
Using a ‘web view’ is great in as much as it allows portability across platforms and because it is
web-based it is more suited to the use of SAML.
If an embedded in-app browser instance is also included, then the SAML sign in pages can be
fully handled within the app presenting a managed and smooth user experience. But there can be
downsides to this; it is possible that in-app browsers won’t be able to handle some specific types
of authentication challenges that the main browser supports (i.e. plug-ins that autofill passwords).
Also in-app browsers will not have access to the main browser's cookie storage (i.e. the benefit of
SSO between apps using a cached SAML token cannot be realised).

SAML with Appgate SDP
As you will have already seen, SAML links 2 parties together, the IdP and the SP. Because it is
hard to get between the user and SaaS based applications, controlling the issuance of SAML
assertions is a quite effective way of controlling who can use these applications. Therefore
CASBs (Cloud Application Service Broker) often set themselves up as IdPs (in SAML terms)
because they need to control authorization towards the SP – which are normally SaaS based
applications.
Appgate SDP’s primary function is to address the PaaS/IaaS (the SaaS market is secondary). By
implementing SAML we are offering enterprises a way to control access to non-web-based
resources using the same IdP that they have deployed for their Cloud and web-based apps. With
PaaS/IaaS it is more appropriate that we behave as a gateway between the user and the
applications, so it makes perfect sense for Appgate SDP to be the SP (in SAML terms).

Appgate SDP Case 1 – Admin SAML
It is possible to use SAML for admin authentication towards the Appgate SDP Controller. In this
case we can use SAML straight out of the box. The Assertion Consumer Service (ACS) reply
URL should go straight to the Controller: https://mycontroller.mycompany.com:8443/admin /saml

Appgate SDP Case 2 – Portal SAML
It is possible to use SAML for Portal user authentication. In this case we can again use SAML
straight out of the box. The Assertion Consumer Service (ACS) reply URL should go to the Portal:
https://myportal.com/saml (port 443). The Portal appliance acts as a redirection server, forwarding
the ACS to the requesting (internal) Client instance.

Appgate SDP Case 3 – Client SAML
Even though the Appgate SDP Client uses ‘web view’ technologies this does not make it SAML
ready as a browser instance is still required. Because the Client is implemented as a native
application, we have ended up with a hybrid arrangement as explained below:
Unlike normal SAML, here Jo wants to sign-in to Appgate SDP, so starts the Client and the
connects (1) without any username and password information present because the IdP will
request these later on. The Controller (the SP in this case) looks up the pre-seeded information
set by the administrator and from this, finds and sends the sign in URL of the IdP to be used for
authentication (2).
Because SAML is being used, the Client expects this URL so when it receives it opens the
browser on the device using this URL which effectively kicks off the SAML authentication request

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

flow (3,4). This is very similar to the original redirection, but because the browser did not kick off
the process then the Client has to invoke the browser.
When the IdP receives this message it will, either authenticate Jo by asking her to enter some
credentials (5). This step may not be visible to Jo if ‘single sign-on’ happens because the request
was received while a valid session cookie persists (because Jo already used the SAML IdP to
sign in to another resource). After successful authentication, the SAML protocol message carrying
a SAML authentication message (6) is sent back to Jo’s browser with the
AssertionConsumerService URL configured within the IdP.

Here is a significant difference in the Appgate SDP SAML flow. In this case when the SAML IdP
was configured for Appgate SDP Client, the redirect URL was set to http://localhost:29001/saml
NOT the URL of the SP (the Controller). The Appgate SDP Client has a listener on
http://localhost:29001/saml so receives this message (7). The Controller is the service provider so
needs the SAML authentication message. The Client grabs this message and re-tries to sign-in to
the Controller (8) but this time with the SAML authentication message attached to the request.
The Controller reads the SAML authentication response message, it verifies the signature and
checks things such as the subject of the message (user’s identifier [NameID]), then any:
Authentication assertions (Jo was authenticated at a specific time via this type of authentication
mechanism); Attribute assertions (Jo is associated with the following claims/attributes);
Authorization decision assertions (Jo’s access to the resource has been granted or not).
The Controller then maps a number of the SAML assertions into Appgate SDP claims so they can
be used for making access decisions downstream. The sign in process is complete and the
normal process of issuing Claims and Entitlement tokens continues form here on.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Appgate SDP Case 4 – Client SAML over TLS
As already stated, the primary trust mechanism is for the SP and IdP to have a pre-existing trust
relationship, typically involving a Public Key Infrastructure (PKI). So, when an assertion is sent
then it is mandated that the response message be digitally signed using the XML digital signature.
And where message integrity and message confidentiality are required, then TLS is
recommended. This whole flow makes the assumption that the browser trusts the IdP and SP as
they will have been set up with properly signed certificates that the browser trusts. But unlike
browsers / web servers the Appgate SDP system lives in a world of its own relying on the self-
signed certificate issued by the Controller. In order to avoid all these potential trust issues, thus
far the Appgate SDP Client has not interfaced to the outside world, however with SAML this
situation no longer applies.
Some SAML IdPs may force the use of https:// for the AssertionConsumerServiceUrl, which
specifies the SP’s URL (localhost in our case). Because of the aforementioned trust issues we
have not implemented a https:// web service for the localhost listener so this will not work.
To mitigate this situation when it arises Appgate SDP requires the flow to take a slightly different
double redirection route.

The difference with this case is that instead of redirecting Jo’s browser to localhost the redirect is
to an intermediate redirect server (6,7). In this case the AssertionConsumerService reply URL
should be set to https://myredirectserver.mycompany.com when configuring the IdP.
Our SAML implementation has the Client expecting the SAML authentication message on
localhost. So, the redirect server does what the IdP did in case 1 and issues another redirect to
http://localhost:29001/saml (8) where the Client is still listening (9). The Client is happy because
the message was duly delivered on its http://localhost listener. There is no difference as far as the
Client is concerned for this case - it can’t tell which case is being used. Once the message is
received the sign-in process (10) continues as it did in the previous SAML case.
The Portal appliance already performs a redirection service for its (internal) Clients. It can also
perform this redirection as it cannot tell the difference between internal and external Clients. So, if
you are using a Portal appliance you get this service for free!

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Authentication user experiences
The user experience differs between desktop and mobile operating systems:

Desktop
On desktop operating systems the default browser is used
maintain a consistent SAML experience across all the user’s
apps and preserve SSO between apps.
• There are two user options which affect the user

experience:
o Autostart means the Client launches when the device

boots and the “Sign in with provider” button will be
shown.

o SAML auto-launch browser means the “Sign in with
provider” page is skipped and the browser opens with
the SAML IdPs sign-in page.

When the browser launches, the user enters any SAML
credentials that the IdP requires (unless they have already done
so recently).

Mobile
On mobile operating systems, the two options above are not
available. The starting and stopping of apps is handled very
differently on mobile and the user will always start the app when
required – so Autostart is not required.
The apps themselves are containerised, so working with other
apps (the browser) is not always supported. For the best user
experience an in-app browser instance is used which renders
the SAML sign-in page served by the SAML IdP.
Since the user experience remains in-app then there is no point
in the SAML auto-sign-in browser feature.
The in-app user experience is exactly the same as desktop
except that the user will always have to enter their credentials
the first time because this is a new browser instance. Thereafter
they may be available for re-use depending on the SAML
provider settings.
This would mean you may not see the actual providers screen –
only the one shown here:

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Authentication events
There are 3 occasions while using the Appgate SDP system where the Client may ask the user to
perform a SAML authentication:

At Client sign in
The profile link will dictate when the user will be using SAML to sign-in to the Appgate SDP
system. The Client itself will not be asking for any credentials such as username and password;
Because the sign-in process is managed by the SAML IdP, Appgate SDP will have no prior
knowledge of how the user has been authenticated. However, part of the SAML configuration will
include attributes – so the AuthnContextClassRef attribute can be mapped to a Claim in Appgate
SDP.

When the Claims token expires
When a claims token expires, the Appgate SDP system wants to
re-authenticate you to the IdP before issuing a new one. Without
SAML this is done by re-submitting cached username/password
credentials to the IdP silently. In the case of SAML, as a SP,
Appgate SDP has no knowledge of the credentials so can’t do
this. This requires a slightly changed process - so in this case you
will be prompted by Appgate SDP to go to the SAML provider sign
in page.
You have to click “RE-AUTHENTICATE” and the browser will
open and the (re)authenticate process begins.
The same process as before is repeated with the user required to
enter their SAML credentials unless they are still valid (either
because of some other recent SAML authentication or because
the SAML token has a longer timeout than the Claims token).
After successful re-authentication the Client captures the SAML
protocol message carrying a SAML authentication and sends it to
the Controller. A new claims token will be issued.

With a password user interaction
The Appgate SDP system sometimes requires real time
confirmation of the user’s credentials. This might happen when
you try to access a specific resource which is linked to a “retype
password” Condition. In the SAML case Appgate SDP must refer
to the IdP again - you will be prompted by Appgate SDP to go to
the SAML provider sign in page.
You have to click “AUTHENTICATE WITH PROVIDER” and the
browser will open in order to (re)authenticate the user.
The same process as before is repeated with the user required to
enter their SAML credentials unless they are still valid (because of
some other recent SAML authentication or because the SAML
token has a longer timeout than the Claims token).
After successful re-authentication the Client captures the SAML
protocol message carrying a SAML authentication and sends it to
the Controller. A new claims token will be issued.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Configuring SAML
SAML may seem like a complex solution, but it is actually very simple to configure. It is no harder
than linking up any other type of identity or authentication solution.
All you need to do it to tell each party about the existence of the other and then to share some
‘secret’ between them to ensure the security of the overall solution.
Below is a quick summary of the steps required however you should refer to the admin guide and
the more detailed integration guides which detail this process.

IdP configuration
To configure SAML for Appgate SDP you should first configure the IdP. In this case we use OKTA
as the example. The main things to configure are:
• The Single Sign On URL – the URL of the SP (http://localhost:29001/saml,

https://mycontroller.myco.com:8443/saml or https://myportal.myco.com/saml)
• The Audience URI – an attribute that is checked by the SP (Controller) and needs to match.
Most SAMP providers allow the configurations to be exported as XML metadata which Appgate
SDP can consume.
Appgate SDP uses claims extensively to make decisions for assignment of Policies and in
Conditions. It is therefore important to capture attributes from the IdP for use as claims. There
should be a section on Attributes where they can be selected from those available in the user
database and specified as to how they will appear in the SAML attributes.

SP (Controller) configuration
Configuring the Controller is also quite straightforward.
Add a new Identity Provider and choose SAML:
• Import the XML meta data
• Add the the Audience is the value you entered into the first screen.
• ForceAuthn provides the option that requires users to enter their credentials every time Client

requires SAML authentication.
You must then map SAML attributes set up earlier to Appgate SDP claims:

Resources
You’ll find additional resources on the Appgate website.
The Appgate SDP product documentation is available here:
• Admin Guide: https://sdphelp.appgate.com/adminguide/saml-idp.html
• Client User Guide: https://sdphelp.appgate.com/userguide
Access to our support services (including further articles) is via the customer portal.

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

Appendices

1. Appgate SDP Controller SAML message requirements
These are the requirements that need to be taken into consideration when configuring the IdP to
ensure compatibility with Appgate SDP:
• The SAML Response token received must be base64 encoded XML assertion. (Standard)
• Status code must be "urn:oasis:names:tc:SAML:2.0:status:Success"
• At least one assertion must be present. Either regular assertion or encrypted assertion (if

there is a decryption key configured in the identity provider).
• Only the first assertion will be validated and used. The rest will be discarded.
• Assertion.Subject.NameID must exist. This value will be used as the "username" in Appgate

SDP.
• NameID value will also be added as an attribute with the hardcoded name 'samlNameId',

which can then be mapped as a claim.
• The assertion must have an 'AuthnStatement'.
• The assertion must have an 'AttributeStatement'.
• The assertion must have audience defined under

'Assertion.Conditions.AudienceRestrictions[0].Audiences[0].AudienceURI', and must exactly
match the value entered in Identity Provider configuration.

• Assertion must have an issuer tag and its value must match the value entered in the Identity
Provider configuration.

• Assertion condition's 'NotBefore' and 'NotOnOrAfter' must be valid compared to the system
time.
• The public certificate entered in the Identity Provider Configuration must have been used

to create either the assertion signature in Response > Assertion > Signature >
SignatureValue or the token signature in Response > Signature > SignatureValue

Token signature

<samlp:Response Destination="http://127.0.0.1:29001/saml"………
 <saml:Issuer>………</saml:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>………</ds:SignedInfo>
 <ds:SignatureValue>
 xkZmtxWrm2BI7BktR9meBNfUasL………

Assertion Signature

<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"………
<samlp:Status>
 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<Assertion xmlns=………
 <Issuer>………</Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>……………</ds:SignedInfo>
 <ds:SignatureValue>
 ka1ZflX26Ad19Sqbx5gq7DM………

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

2. Configuring the IdP:
SAML 2.0 supports a number of different bindings of which we use two:
HTTP Redirect Binding
HTTP POST Binding
These are the most commonly used for web SSO. For example, the SP may use HTTP Redirect
to send a request while the IdP uses HTTP POST to transmit the response.
For Client sign in
• Clients only support HTTP POST binding: http://localhost:29001/saml
• For HTTPS POST binding a redirection server must be used such as the Portal appliance.
For Portal Client sign in
• POST: https://myportal/saml
For Admin UI sign in

• POST: https://mycontroller:8443/admin/saml
• Redirect: https://mycontroller:8443/ui/sign-in.html
• Port 8443 is set in the appliance configuration 'Admin/API TLS Connection' field.

3. Diagnostics
If anyone wants to see SAML in action then there is a useful diagnostic tool that lets you see what
SAML is doing under the covers; SAML tracer is a Firefox plugin which adds a viewer window to
Firefox that automatically decodes and shows SAML messages.

4. Example SAML Assertion
The interesting values are highlighted.

<?xml version="1.0" encoding="UTF-8"?>

<saml2:Assertion

 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" ID="id5928737690330746790056518"
IssueInstant="2016-05-11T14:52:14.821Z" Version="2.0">

 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:entity">http://www.okta.com/Issuer</saml2:Issuer>

 <saml2:Subject>

 <saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:transient">userName</saml2:NameID>

 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

 <saml2:SubjectConfirmationData NotOnOrAfter="2016-05-11T14:57:14.821Z"
Recipient="http://127.0.0.1:29001/saml"/>

 </saml2:SubjectConfirmation>

 </saml2:Subject>

 <saml2:Conditions NotBefore="2016-05-11T14:47:14.821Z" NotOnOrAfter="2016-05-11T14:57:14.821Z">

 <saml2:AudienceRestriction>

 <saml2:Audience>okta_test</saml2:Audience>

 </saml2:AudienceRestriction>

 </saml2:Conditions>

 <saml2:AuthnStatement AuthnInstant="2016-05-11T14:52:14.821Z">

 <saml2:AuthnContext>

<saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</saml
2:AuthnContextClassRef>

 </saml2:AuthnContext>

 </saml2:AuthnStatement>

 <saml2:AttributeStatement>

WWW.APPGATE.COM 2333 PONCE DE LEON BLVD, SUITE 900, CORAL GABLES, FL 33134, USA

 <saml2:Attribute Name="username" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">user.sign in

 </saml2:AttributeValue>

 </saml2:Attribute>

 <saml2:Attribute Name="id" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">user.sign in

 </saml2:AttributeValue>

 </saml2:Attribute>

 <saml2:Attribute Name="firstName" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">user.firstName

 </saml2:AttributeValue>

 </saml2:Attribute>

 <saml2:Attribute Name="lastName" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">user.lastName

 </saml2:AttributeValue>

 </saml2:Attribute>

 <saml2:Attribute Name="emails" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">user.email

 </saml2:AttributeValue>

 </saml2:Attribute>

 <saml2:Attribute Name="groups" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">

 <saml2:AttributeValue

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">GroupName Match Contains "test" (ignores case)

 </saml2:AttributeValue>

 </saml2:Attribute>

 </saml2:AttributeStatement>

</saml2:Assertion>

